If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2+42x-4800=0
a = 6; b = 42; c = -4800;
Δ = b2-4ac
Δ = 422-4·6·(-4800)
Δ = 116964
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{116964}=342$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(42)-342}{2*6}=\frac{-384}{12} =-32 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(42)+342}{2*6}=\frac{300}{12} =25 $
| 1/6-1/2m=1/6m+7/18 | | 6(3n+4)=-22-5n | | 2/3x+6=1/2x=1/4x | | 11u=15+8u | | 19=-z/4 | | -15-6a=-59 | | 6m+6+8m=4+3m+7m-10 | | 21=y/2 | | 3n+8=n-3+2-3 | | 9x+6+x+4=9 | | 4×z/4=10 | | -2p-1(-2p-1)=1 | | 3.4=2n-4 | | 6(-4+5n)=-144 | | x+x=(x=45)=180 | | 3(4d+3)=12-(8d-5)+6d | | 15.3=3n-4 | | 8x-6x=24 | | -6(2x=3)=42 | | a/36=12 | | -1(-1-2p)-2(1p-1)=1 | | 17.2=3n-1 | | 30=-7w+5(w+2) | | -(-1-2p)-2(p-1)=1 | | 7(y-8)=8y+4 | | 5s+2+2s-4=11s+4-2s | | 1x=2.7 | | 3(4b+8)+8(8b-2)=8 | | 6(-1+3n)+8n=-214 | | 4x+2=-7+2x+13 | | X+(12-2x)=3 | | 0,5(x+2)-0,4(x+5)=11 |